There are no items in your cart
Add More
Add More
Item Details | Price |
---|
Beginner to Advance Level
LIFETIME ACCESS
Instructor: Shagun Garg
Language: HINDI
Validity Period: Lifetime
Get Lifetime Access of this course
Certificate
20-22 Hrs High Quality Videos
Study Material for Interview Preparation
Assignments
Recommended for Beginners
Best coding patterns
Hindi language course
Basic knowledge of Javascript is Required. If you are not Familiar with it then we have a course for js + ts too
Upon successful completion of the course, you will be able to learn:
Click on Add to Cart
Signup
Pay
Start with your Course
Source codes | |||
course access | |||
Course Discussion | |||
Important | |||
01 - Introduction | |||
101 - why ds and algo ? | Preview | ||
1.02 - what is data structure | Preview | ||
1.03 - what is an algorithm | Preview | ||
1.04 - Real example of Ds and algorithm | Preview | ||
02 - Big O Notation | |||
2.01 - solving our first problem | Preview | ||
How you should Proceed? | Preview | ||
2.02 - solving our problem with different approach | Preview | ||
2.03 - the big o notation | Preview | ||
2.04 - comparing both algorithms | Preview | ||
2.05 - cases in big o notation | Preview | ||
2.06 - data structure and time complexity | Preview | ||
2.07 - Cheat sheet of ds and algo | Preview | ||
link | |||
03 - Problem solving approach | |||
3.01 - How to solve a problem | Preview | ||
NOTICE | Preview | ||
3.02 - counting frequency solution 1 | Preview | ||
3.03 - counting frequency solution 2 | Preview | ||
304 - anagram problem | |||
3.05 - sum zero problem | |||
3.06 - sum zero problem solution 2 | |||
3.07 - counting unique numbers | |||
3.08 - longest unique string solution 1 | |||
3.09 - longest unique sum - solution 2 | |||
3.10 - divide and conquerer | |||
3.11 - instagram ads algorithm problem | |||
04 - Recursion | |||
4.01 - what is recursion | |||
4.02 - call stack | |||
4.03 - Using Recursive function | |||
4.04 - advance recursive function | |||
4.05 - helper recursive function | |||
05 - Search Algorithms | |||
5.01 - intro to search algorithms | |||
5.02 - linear search algorithm | |||
5.03 - Intro Binary search algorithm | |||
5.04 - Binary Search Algorithm | |||
5.05 - Intro to Naive Search Algorithm | |||
5.06 - Naive search algorithm | |||
5.07 - Intro to kmp algorithm | |||
5.08 - Calculating IPS table | |||
5.09 - Kmp algorithm | |||
06 - Bubble Sort | |||
6.01 - introduction to sorting | |||
6.02 - js built in sort | |||
6.03 - intro to bubble sort | |||
6.04 - bubble sort implementation | |||
6.05 - bubble sort optimisation | |||
07 - Selection Sort | |||
7.01 - intro to selection sort | |||
7.02 - selection sort algorithm | |||
08 - Insertion Sort | |||
8.01 - intro to insertion algorithm | |||
8.02 - insertion sort algorithm | |||
8.03 - comparing all three algorithms | |||
09 - Merge Sort | |||
9.01 - intro to intermediate level algorithms | |||
9.02 - intro to merge sort | |||
9.03 - intro to merging | |||
9.04 - implementing merge logic | |||
9.05 - merge sort implementation | |||
9.06 - time complexity of merge sort | |||
10 - Quick Sort | |||
10.01 - intro to quick sort | |||
10.02 - pivot utility | |||
10.03 - pivot utility implementation | |||
10.04 - Quick sort implementation | |||
10.05 - Quick sort explanation | |||
Time Complexity of Quick Sort | |||
11 - Radix Sort | |||
11.01 - intro to radix algorithm | |||
11.02 - radix helper utility | |||
11.03 - radix sort | |||
11.04 - time complexity of radix sort | |||
12 - Single Linked List Data Structure | |||
12.01 - into to data structures | |||
12.02 - linked list introduction | |||
12.03 - kickstart single linked list | |||
12.04 -single linked list push | |||
12.05 - linked list pop possible solution | |||
12.06 - linked list pop solution | |||
12.07 - linked list push at head | |||
12.08 - linked list shift | |||
12.09 - linked list get | |||
12.10 - single linked list set | |||
12.11 - single linked list insert | |||
12.12 - single linked list remove | |||
12.13 - single linked list reverse intro | |||
12.14 - single linked list reverse | |||
12.15 - single linked list time complexity | |||
13 - Tree Traversal | |||
13.01 - doubly linked list intro | |||
13.02 - doubly linked list setup | |||
13.03 - Doubly linked list push | |||
13.04 - dll pop | |||
13.05 - dll shift | |||
13.06 - dll unshift | |||
13.07 - dll get | |||
13.08 - dll set | |||
13.09 - dll insert | |||
13.10 - dll remove | |||
13.11 - sll vs dll | |||
14 - Stacks & Queues | |||
14.01 - intro to stack | |||
14.02 - array as stack | |||
14.03 - creating a stack from scratch | |||
14.04 - time complexity of stack | |||
14.05 - intro to queue | |||
14.06 - using queue from array | |||
14.07 - creating queue from scratch | |||
14.08 - time complexity of queue | |||
15 - Binary Search Trees | |||
15.01 - intro to trees | |||
15.02 - Uses of Trees | |||
15.03 - intro to binary tree | |||
15.04 - searching in bst | |||
15.05 - BST setup | |||
15.06 - Bst Insert | |||
15.07 - BST find | |||
16 - Tree Traversal | |||
16.01 - intro to tree traversal | |||
16.02 - BFS | |||
16.03 - DFS pre order | |||
16.04 - Dfs pre order | |||
16.05 - Dfs post order | |||
16.06 - Dfs post order solution | |||
16.07 - dfs in order | |||
16.08 - dfs in order solution | |||
16.09 - Dfs vs Bfs | |||
17 - Binary Heap | |||
17.01 - intro to binary heaps | |||
17.02 -Sorting heaps | |||
17.03 - intro to binary heap insert | |||
17.04 - max heap insert solution | |||
17.05 - max heap extract max intro | |||
17.06 - heap extract max solution | |||
17.07 - priority queue intro | |||
17.08 - priority queue part 1 | |||
17.09 - priority queue part 2 | |||
17.10 - time complexity of binary heap | |||
18 - Hash Tables | |||
18.01 - intro to hash tables | |||
18.02 - intro to hash functions | |||
18.03- writing our own hash functions | |||
18.04 - improving our hash function | |||
18.05 - handling collision | |||
18.06 - hash table set and get | |||
18.07 - hash table set solution | |||
18.08 - hash table get solution | |||
18.09 - Hash table key and value | |||
18.10 - Time complexity of hash tables | |||
19 - Graphs | |||
19.01 - Intro to Graphs | |||
19.02 - use cases of graphs | |||
19.03 - types of graph | |||
19.04 - adjacency matrix & adjacency list | |||
19.05 - time complexity of adjacency matrix vs adjacency list | |||
19.06 - Add vertex | |||
19.07 - add edge | |||
19.08 - remove edge | |||
19.09 - remove vertex | |||
20 - Graph Traversal | |||
20.01 - intro to graph traversal | |||
20.02 - Intro to Graph Dfs | |||
20.03 - graph dfs recursively | |||
20.04 - graph dfs recursively explaination | |||
20.05 - graph dfs iteratively | |||
20.06 - bfs intro | |||
20.07 - bfs solution | |||
21 - DIJKSTRA’S Algorithm | |||
21.01 - Dijkstra's algorithm | |||
21.02 - creating weighted graph | |||
21.03 - Dijkstra's walkthrough | |||
21.04 - Dijkstra's implementation | |||
21.05 - optimisation of algorithm | |||
Conclusion | |||
js data structure and algorithm |
After successful purchase, this item would be added to your courses.
You can access your courses in the following ways :
Learn With One of the Best Instructor in Hindi
The biggest advantage of Online education is that you study at your pace.
Now you can study at your home or with your friends.